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ABSTRACT

The practical effectiveness of text-to-SQL systems is often limited
by the scarcity of domain-specific benchmark datasets. Manually
curating these benchmarks struggles with translating ambiguous
business question amidst complex metrics, domain knowledge, and
data structures. To address this bottleneck, we propose a novel semi-
automatic approach for generating high-quality text-SQL pairs via
reverse engineering. Our method generates diverse SQL queries by
sampling from and altering prepared SQL templates, then employs
Large Language Models to synthesize corresponding natural lan-
guage questions grounded in these valid SQL instances. We demon-
strate this methodology through a case study in an e-commerce
seller domain, yielding 702 diverse seller question-SQL pairs cover-
ing sales and inventory scenarios. Domain expert validation con-
firmed 95.11% question generation accuracy, significantly reducing
manual efforts while maintaining high fidelity. This methodology
can be adapted to other domains, facilitating the development of
more reliable text-to-SQL systems across various industrial appli-
cations.
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1 INTRODUCTION

Practical text-to-SQL systems often involve domain-specific com-
plexities and interactions with databases that extend far beyond
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general benchmarks. It has been demonstrated that existing state-
of-the-art text-to-SQL systems often fail to address real-world enter-
prise setting queries, despite their impressive performance with the
existing text-to-SQL benchmarks [2, 7]. We note several challenges
associated with developing domain-specific text-to-SQL systems: 1)
the schema complexity of large-scale enterprise databases and in-
curred ambiguity in user queries, 2) the need to incorporate domain-
specific business metrics and temporal analyses that require sophis-
ticated computations, 3) the dual requirement of maintaining high
accuracy for high-stakes business decisions while ensuring broad
query coverage and 4) the need for scalable evaluation methods to
assess system performance.

A critical barrier to developing robust text-to-SQL systems in
practice is the scarcity of domain-specific benchmark datasets,
which is often attributed to data privacy concerns, regulatory re-
strictions, and most importantly, the resource-intensive process of
creating high-quality evaluation datasets. Unlike general-purpose
benchmark datasets, domain-specific settings often involve com-
plex, or sensitive database schemas that require expert knowledge
to interpret accurately. Writing natural language questions that
reflect practical analytical needs require not only domain knowl-
edge but also a deep understanding of the databases. Moreover,
aligning each question with a correct, executable SQL query is a
non-trivial task, often requiring manual verification or domain ex-
pert input. These constraints make the manual annotation process
time-consuming and expensive, limiting scalability. Additionally,
domain-specific queries my rely on temporal analysis and con-
textual assumptions that are difficult to capture in a standardized
annotation format, further complicating both data curation and
downstream evaluation. To address this crucial gap, we propose a
semi-automatic methodology that significantly reduces the manual
efforts required to curate ground-truth question-SQL pairs, thereby
enabling more comprehensive and efficient evaluation of text-to-
SQL systems in domain-specific contexts. While full automation
might offer faster dataset generation, it would risk missing critical
domain-specific nuances and producing unrealistic query variations.
Our approach strategically combines human expertise in crafting
SQL query templates with automated processes for question gen-
eration, while maintaining human oversight for quality control
and domain-specific refinements, striking a balance between effi-
ciency and reliability in enabling more comprehensive evaluation
of text-to-SQL systems in domain-specific contexts.
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Our proposed methodology involves a reverse-engineering strat-
egy by transforming the text-to-SQL task to a SQL-to-text problem.
Our method begins with a carefully selected set of "gold" SQL
queries representing common domain-specific user queries. These
queries are transformed into templates with strategic placehold-
ers for business metrics, temporal information or other relevant
parameters. We prepare those templates via a manual process. By
systematically sampling and augmenting these templates using
those placeholders, we effectively create a diverse pool of ground-
truth SQL queries. We then leverage large language models (LLMs)
to interpret the resulting SQL codes and generate natural language
questions that correspond to each of the SQL query respectively.
This SQL-to-text approach offers several key advantages. By start-
ing with valid SQL queries, we guarantee query validity and correct
reference to table and column names. We can systematically con-
trol coverage of different SQL patterns and complexities. Addition-
ally, this enables more cost-effective quality control as reviewing
generated questions is typically easier than reviewing generated
SQL. Lastly, as confirmed in our numerical results, generating ques-
tions from SQL is much easier than generating SQL from questions,
with SQL-to-text conversion achieves 57.41% higher accuracy on
complex SQL queries than text-to-SQL tasks. The resulting dataset
consists of question-SQL pairs, which can be used to evaluate a text-
to-SQL system’s performance by measuring the execution accuracy
based on the query results from the system and the ground-truth
SQL.

We demonstrate the effectiveness of our approach through a case
study in the seller domain. Specifically, we applied our strategies
while developing a text-to-SQL system that supports analytical ca-
pabilities to provide sellers with personalized business support and
insights. We developed a dataset through our proposed method-
ology, achieving 95.11% accuracy on the validity of the question
and answer pairs. Using this dataset for evaluation, we develop
an LLM-based text-to-SQL interface in the seller domain. Our key
contributions in this paper include:

e Semi-automatic data generation and evaluation: We
introduce a novel semi-automatic evaluation data curation
process, significantly reducing the manual effort required
to establish ground-truth question-SQL pairs in the seller
domain. By leveraging popular SQL queries augmented with
sampled fields, our approach automates diverse question and
ground-truth generation with accuracy of 95.11%, stream-
lining the evaluation of practical text-to-SQL systems. To
the best of our knowledge, this is the first effort to delve
into automatic evaluation method for seller data domain.
Our proposed automatic method is domain-agnostic and can
easily generalized to other domains.

o Seller-domain text-to-SQL benchmark dataset: We ad-

dress the critical gap in text-to-SQL research for the e-commerce

seller domain by introducing a benchmark dataset compris-
ing of 702 diverse natural language seller queries paired
with their corresponding SQL statements. Prepared using
our novel data curation methodology to ensure both diver-
sity and real-world applicability, this dataset spans key seller
areas ranging from sales analytics to inventory management.
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o Seller-domain text-to-SQL framework: We present a spe-
cialized framework that addresses unique challenges in the
seller domain by handling complex business metrics analy-
sis, query ambiguity and high precision requirement. Our
framework leverages domain-aware query generation to ef-
fectively navigate complex e-commerce database structure,
while employing a multi-phase prompting approach to en-
sure high accuracy and coverage. Through robust context
interpretation, the framework handles varied natural lan-
guage expressions while maintaining precision above 94%
for high-stake seller decisions.

1.1 Related Work

The evaluation of text-to-SQL systems has traditionally relied on
established benchmark datasets [2, 5, 7, 8, 19]. While these bench-
marks aggregated thousands of examples from various domains,
they often fail to capture domain-specific complexities. Notably,
BEAVER’s focus on enterprise data warehouses has highlighted
the significant gaps between academic benchmarks and real-world
business requirements [2]. Furthermore, while LLM-as-a-judge ap-
proaches have shown promise in evaluating general knowledge-
based questions [9, 16], their application to data-dependent insights
remains challenging due to the open-ended nature of such queries
and the need for domain-specific validation.

Recent efforts to address the high cost of manual annotation
have explored synthetic data generation approaches, including
LLM-based text-SQL pair generation [18], template-based methods
for various SQL dialects [14]. However, these approaches primarily
focus on general-purpose datasets and don’t address the unique
challenges of domain-specific data curation, particularly in cases
where representative user queries are scarce.

2 SEMI-AUTOMATIC BENCHMARK DATASET
GENERATION

We now outline our methodology for semi-automatic benchmark
data generation. While LLMs can generate question-SQL pairs di-
rectly, such synthetic outputs often contain unrealistic questions
and require substantial manual validation effort. To address this
challenge, we introduce a reverse-engineering approach that lever-
ages existing validated SQL queries as our starting point, rather
than attempting to generate queries from scratch or relying solely
on manual annotation. This approach enables us to generate syn-
thetic question-SQL pairs that are grounded in valid SQL queries,
creating higher-quality questions that are more diverse and realistic
[11]. Our procedure involves three main steps: data preparation,
generation and validation, with the final step incorporating both
automated and expert review to ensure data quality. The general
question generation algorithm is presented in Algorithm 1. The
overall data curation workflow with an example is illustrated in
Figure 1.

Data Preparation. Our methodology begins with a carefully se-
lected set of validated SQL queries that represent common domain-
specific use cases. We transform these queries into templates by
identifying key components that can be parameterized, such as
metric columns, filtering conditions, and temporal references. To
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Algorithm 1 Semi-automatic Question-SQL pair generation

Require: Set of SQL templates T
Require: Set of template specific parameters C; for each template
t € T, including possible table columns, aggregation functions,
and time periods
Require: Total number of question-SQL pairs N; to be generated
for each template
Require: Question generator: generateQuestion(SQL, context)
Require: Question-SQL pair validator: isValid(q, SQL)
1: D={} > Validated pairs of question-SQLs
2. foreacht € T do
3 n=0
4 while n < Ny do
5 Sample ¢ ~ C;
6 SQL = instantiateTemplate(t, c)
using template and parameters
7: q = generateQuestion(SQL, context) > Generate
question using SQL and relevant contexts such as table schema
8: if isValid(q, SQL) then » Validate with LLMs and/or
domain expert
9: D« DU{(q,SQL)}
10: n=n+1
11: end if
12: end while
13: end for
14: return D
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Figure 1: Semi-Automatic Benchmarking Dataset Generation
Workflow

ensure diversity in our ground-truth pairs, we implement system-
atic sampling strategies for these parameters based on their types.
For metric columns sampling, we select key columns from the ta-
ble schema and the relevant aggregation functions such as SUM,
COUNT or AVG. For filter conditions with threshold values, we can
sample from the statistical distributions based on their historical
data or leverage domain-specific rules. For temporal analysis, we
incorporate both dynamic time computation and fixed date values.
For example, time references can be sampled as either specific dates
(e.g., "2024-12-31") or relative references (e.g., "yesterday") that auto-
matically adjust based on the query execution date. This approach
reflects real-word user behavior where temporal references are
often contextual and relative, while simultaneously expanding the
template’s applicability across different time periods.

Data Generation. Using these parameterized SQL templates, we
create new SQL queries by systematically sampling values for the
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parameters (See Figure 1 for an example). We then leverage LLMs to
generate several natural language questions that accurately reflect
the underlying query intent. Note that generated questions for
the same SQL query can be similar questions that are paraphrases
to each other. To improve generation accuracy, we prompt the
LLMs by providing the annotated table schema, temporal reference
information and the resulting SQL query as contexts. This context
helps ensure that generated questions can exhibit natural language
variations while align with the provided SQL query.

Data Validation. We implement a two-stage validation process
combining automated LLM-based filtering with domain expert re-
view. The first stage utilizes LLMs to verify the consistency be-
tween generated questions and their corresponding SQL queries.
This verification process can be achieved by leveraging LLMs to
check whether the generated questions can be answered by the
SQL query, or whether they are paraphases of each. To improve
validation accuracy, we include the original validated SQL queries
as few-shot examples in the LLM prompts. The second stage in-
volves domain expert review to ensure the relevance and accuracy
of generated questions to real seller use cases. This can help discard
those that do not reflect real seller use cases or cannot be fully
addressed with the ground-truth SQL query. This hybrid approach
balances efficiency with quality assurance.

3 A CASE STUDY: QUESTION-SQL
GENERATION FOR THE SELLER-DOMAIN

We demonstrate our proposed data generation strategy through a
case study in the seller domain. We consider an LLM-empowered
conversational assistant that enables sellers to better access and
analyze their business data through natural language inquiries,
delivering data-driven answers in narrative format. We developed a
text-to-SQL framework for the seller-domain. Note that in contrast
to general text-to-SQL tasks [3, 6, 8, 13, 19, 20], the seller-domain
SQL query generation entails sophisticated adaptations in handling
the following key challenges.

Ambiguity handling. Sellers may use ambiguous terminology
when referring to business metrics or time period, further compli-
cating intent-metric matching.

Complex metrics analysis. Seller metrics can have overlap-
ping definitions or varying terminology, and may require further
derivation and calculations, as they are not directly stored in the
database.

High precision requirement. As sellers may perform subse-
quent high-stake actions, it is crucial to prioritize accuracy for SQL
generation while ensuring decent coverage of seller questions.

3.1 Seller-Domain Benchmark Data Generation

Following the method outline in Section 2, we prepared a bench-
mark dataset that is designed for evaluating practical seller-domain
text-to-SQL systems. The dataset covers business data from sales,
traffic, inbound shipments and inventory. In handling the chal-
lenges of evaluating practical systems, we tailor the question-SQL
pairs to reflect potential real-world communication errors, ambigu-
ous temporal expressions and business context. The prompt for
generating potential seller questions based on given SQL queries
can be found in Appendix A.
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3.2 A Seller-Domain Text-to-SQL Framework

We describe a high-level framework that addresses above challenges
in the seller domain through three key components: table selection,
SQL query generation, and response formulation, where the latter
two steps are achieved via prompting LLMs. As illustrated in Figure
2, the process begins by identifying relevant tables and columns
from complex database schema based on sellers’ natural language
queries. This contextual information is incorporated to prompt an
LLM, which then generates a SQL query accordingly. After query
execution, an LLM formulates a coherent response, translating raw
database output back into natural language to address the seller

query.

Seif.Conection

‘Schema Annolation

m
'SQL Syntax Corector

Table Selection

Dynamic Consiruction

Figure 2: Proposed seller-domain text-to-SQL framework.

Table selection. The seller domain typically involves large-scale
databases with a large number of tables (>50), which poses chal-
lenges for LLMs in utilizing information efficiently [10]. To improve
the accuracy of metrics analysis based on seller queries, our frame-
work performs top K relevant tables retrieval. Only these tables and
corresponding columns are then considered in the subsequent SQL
query generation step. Inspired by contextual retrieval from [12],
we represent each table beyond its description, enriching it with
contexts such as metadata and exemplars and then apply similarity
search between tables and seller queries.

SQL query generation. In addressing the seller-domain-specific
challenges, our framework employs a structured three-phase chain-
of-thought (CoT) approach [17] embedded within a prompt tem-
plate, focusing on selective aspects of SQL generation. In the first
phase, the system performs temporal context analysis by maintain-
ing an explicit representation of various time units, allowing for
precise interpretation of relative time expressions and handling of
calendar-based aggregations. This temporal reasoning is further
enhanced by using default values to resolve time ambiguity and
rolling window calculations to supplement LLMs’ calculation capa-
bilities. This is particularly crucial for business metrics that require
comparative analysis across different time periods. The second
phase focuses on schema comprehension, following a structured
approach to understand complex metrics derivations, table rela-
tionships, column dependencies and data type compatibility. This
phase is augmented by table schema annotation, where descrip-
tions of both tables and columns are included to facilitate LLMs’
understanding of domain-specific terminologies and thus better
handling ambiguity in metric definitions. The final phase conducts
query construction, following explicit reasoning steps to produce
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valid SQL queries while maintaining consistency with the original
seller queries.

We also augment the prompt with LLMs’ few-shot learning ca-
pabilities to improve SQL generation accuracy [1]. We include in
the prompt key example triplets containing the seller question, rea-
soning and the correct SQL query, where the reasoning component
explicitly captures the cognitive process of translating seller inquiry
into structure query elements. The CoT few-shot exemplars ben-
efits complicated query generation and are strategically selected
to cover diverse use cases and temporal patterns. Currently, the
CoT few-shot examples are generated via manual efforts. To create
these reasoning at scale, we consider a Self-Taught Reasoner (STaR)
approach which iteratively leverages a small number of rationale
examples and a large dataset without rationales, to bootstrap the
ability to perform successively more complex reasoning [4].

Final response generation. The final component of the framework
addresses the challenge of generating accurate natural language
responses from SQL query results for sellers. This step is crucial
as it handles multiple sources of ambiguity while ensuring factual
accuracy in the generated response.

3.3 Text-to-SQL Evaluations

We address ambiguity in seller queries by performing ambiguity-
aware evaluations using a hierarchical matching approach that
progresses through multiple levels of evaluations beyond exact
result matching. This evaluation process not only ensures execu-
tion accuracy, but also aligns with seller experience improvement
strategies by generating contextual answers or requesting potential
clarifications. This process starts with strict comparison to execu-
tion results of ground-truth SQL. This level includes ground-truth
answers as default interpretation of the original seller questions,
allowing assessment of the system’s capability in providing con-
sistent answers. We then expand to consider variations in time
periods, metric selection and result granularity that correspond to
alternative interpretations of the seller query. By leveraging subset
relationships between the generated SQL’s execution results and
the expanded ground-truth values, this hierarchical approach sys-
tematically evaluates the generated SQL’s accuracy in a way that
reflects both flexibility and fidelity to the ground-truth.

4 EXPERIMENTS

Metrics. To measure the system’s performance in accurately re-
trieving data based on seller queries, we utilize the execution
accuracy evaluation metric, which assesses the execution accu-
racy of the generated SQL query by comparing its execution result
against the ground-truth results [8]. Alternative metrics include ex-
act match or component matching between SQL queries. However,
they are less relevant here since multiple SQL queries can be used
to generate the same response [15].

Data. We utilize business data from five distinct tables: seller
business report data, seller’s inventory data, inbound and shipment
creation data.
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4.1 Results

Benchmarking and dataset evaluation. Through our proposed
semi-automatic data curation process, we compiled a comprehen-
sive evaluation dataset of 702 questions and their corresponding
ground-truth SQL queries. The dataset consists of 255 manually
prepared questions that were analyzed and summarized to prepare
the SQL templates. The remaining 447 question-SQL pairs are cu-
rated through the semi-automatic evaluation methods in Section 2
for a more holistic evaluation of our proposed text-to-SQL system.

As validated by domain experts, the seller-domain dataset in-
cludes diverse expressions, time period references, metric selection
and implicit ambiguity, achieving accuracy of 95.11% in generating
valid problem-SQL pairs, where each generated question is cor-
rectly answerable by its corresponding SQL query. This accuracy
remains consistent across varying SQL complexities. In contrast,
the text-to-SQL model only achieves an accuracy of 37.70% when
converting seller questions to their corresponding complex SQL
queries. This significantly reduces the time and efforts in collecting
seller questions and their respective ground-truth SQL queries.

Text-to-SQL evaluations. We evaluate our text-to-SQL system
on our benchmark dataset and report the results in Table 1. We also
benchmark our model performance against a vanilla LLM-based
text-to-SQL model (Claude Sonnet 3.0). Overall, the framework
achieved an overall accuracy of 94.3%, with 83.05% execution accu-
racy (EA) and the 11.25% categorized as alternative interpretations
(ALt) of the seller questions. These alternative interpretations arise
from ambiguities within the seller questions, such as multiple po-
tential metrics, unclear time references or varying levels of data
granularity. Since those alternative interpretations are valid re-
sponses to the ambiguous seller questions, we include them as
part of a broad accuracy metric. However, further enhancements
in interpreting seller intents are necessary to further improve user
experience, particularly for ambiguous or complex questions.

Notably, the text-to-SQL framework outperforms the vanilla
text-to-SQL system that is not tailored to the seller domain by
yielding higher accuracy. The curated dataset, generated through
the proposed semi-automatic evaluation procedure validates the
reliability of the proposed the framework. Error analysis revealed
that inaccuracies primarily arose from incorrect temporal analysis
(e.g., misinterpreting date ranges), errors in column selection or
computation, and SQL-related errors that lead to either execution
failure or invalid results.

Ablation study. We present an ablation study in Table 2 to
evaluate the contributions of individuals modules in our text-to-
SQL prompt. For simplicity, we conduct the study on 255 questions
that are manually collected. Removing any components results in a
noticeable drop in the overall accuracy, with the largest drop occur-
ring when Chain of Thought (CoT) reasoning is removed. While
CoT is crucial for handling complex queries, schema annotations
and few shot examples also enhance the system in reducing error
rates. Note that the full system achieves the best accuracy at the
cost of incurring the highest latency, due to the computational cost
of incorporating all modules.
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5 CONCLUSIONS AND NEXT STEPS

We tackle the challenges of developing domain-specific text-to-SQL
systems by introducing a scalable semi-automatic data curation
methodology. Through our case study in the seller domain, we
demonstrate the effectiveness of this approach by developing both
an evaluation benchmark dataset and an end-to-end text-to-SQL
framework. While our curated dataset primarily serves evaluation
purposes in this paper, it has broader potential applications for con-
tinuous improvements of text-to-SQL systems. Fully automating
data curation and evaluations remain important research questions,
especially for more complex data insights that may require more
sophisticated reasoning. Moving forward, we plan to augment our
question-SQL pairs with reasoning annotations, enabling system-
atic evaluation of reasoning capabilities in the seller domain.
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Table 1: Evaluation results for text-to-SQL. EA: exact match with the ground-truth query execution result. Alt: alternative
interpretation of the seller questions.

Accuracy Types Error Source
Accuracy
Overall EA Alt Time SQL Others
Seller-Domain Text-to-SQL | 94.30%  83.05% 11.25% | 2.71% 1.42% 1.57% 94.30%
Vanilla Text-to-SQL 78.06%  60.54% 17.52% | 12.82% 6.70%  2.42% 78.06%

Table 2: Ablation study for removing selected modules from our proposed text-to-SQL system.

Overall Acc EA Alt Error Latency (P50/P90)
Text-to-SQL System 93.73% 81.18% 12.55% 6.27% 5.2s/8.3s
[-] Few Shot Examples 91.76 %(]) 77.65% 14.12%  8.24% 4.35/6.9s
[-] Schema Annotation 88.24%(|) 76.08% 12.16% 11.77% 4.1s/6.5s
[-] CoT 78.04%(])  61.18% 16.86% 21.96% 2.0s/3.7s
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SQL generation prompt

You are an expert data analyst specializing
in transforming e-commerce sellers’ business data
requests into efficient and valid SQLite queries.
Here is the table schema you have access to:
<table_schema>
{table_schema}
</table_schema>
<instruction>
Think step-by-step to generate the SQL query:
- First provide your reasoning on how to generate the
SQL query in <reasoning> tags.

- Analyze the associated time in the seller
question

- Today is {today_date} (today_week_day) in
YYYY-MM-DD format.
- This week starts from {start_of_week}

(Sunday) and ends on
{end_of_week} (Saturday).

- Interpret ’last/past’ periods as complete
calendar wunits before the current date, unless
explicitly stated otherwise.

</instruction>

Here are some examples:

<examples>

{examples}

</examples>

Here is the seller’s question:

<query>

{query}

</query>

Strictly follow the above instructions and provide the
SQL query that would retrieve the data. Do not provide
explanations after the SQL code.

Figure 4: A simplified SQL generation prompt

A PROMPTS

Data generation prompt

You are an expert data analyst helping e-commerce
sellers understand their business performance. Your
task is to generate authentic seller questions that
can be answered using the results of the following SQL
query:

<table schema>

{table_schema}

</table schema>

<sql>

{query}

</sql>

To complete the task follow these steps:

1. Analyze the intent of the SQL query and document
your analysis in <analysis> tags.

2. Consider an e-commerce seller’s perspective and
common business questions. Map the SQL query output
to real business scenarios.

3. Based on your reasoning, generate 3-5 realistic
seller questions that

- can be fully answered by the query results without
additional analysis or reasoning steps.

- Reflect varying levels of data literacy.

- Include natural language variations and occasional
typos to mirror authentic seller communication.

Put each question in a <question> tag.

Figure 3: A simplified data generation prompt
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